创新 innovation
您现在的位置:首页 > 创新 > AI又当医生了,这次是通过血液识别癌症

新闻

石头保:个体户的互联网人事服务平台 石头保:个体户的互联网人事服务平台

随着全球疫情影响的扩大,企业的订单萎缩,大量线下店倒闭,劳动力失去了原本工作岗位,导致失业和创业...

  • 智慧会议解决方案 TCL智显V30智慧会议平板深度体验

    近两年,众多视频会议开发商逐渐走进大众视野,且这一行业有着迅速崛起的势头。不过,对于大部分企业来说,本地会议仍是日常工作的重要组成部分。然而随着大众对更高效率的追求,传统的会议设备如投影仪连接操作...

  • 世界首例低温保存骆驼胚胎移植完成

    科技日报呼和浩特4月12日电 记者4月12日从内蒙古科技厅获悉,“高产奶骆驼胚胎移植技术应用研究”项目取得重大突破,世界首例低温保存骆驼胚胎移植在内蒙古阿拉善盟获得成功。以阿拉善双峰驼作为受体移植的经低温保...

  • 帕金森碰上5G 疫情期间仍能全程管理和照护

    4月11日,在网络直播模式下,中国人民解放军总医院(301医院)功能神经外科主任医师凌至培现场接诊了一位远在吉林省吉林市的帕金森患者,6年前植入她脑中的脑起搏器需要进行电信号的微调。 在云诊疗现场,凌至...

科技

用高科技替代除草剂 保障粮产与食品“双安全” 用高科技替代除草剂 保障粮产与食品“双安全”

“新冠肺炎疫情迅速蔓延全球,一些国家和地区正在加强贸易管控。对于我国粮食安全同样带来严峻考验。”近...

  • FAST科学研究与数据处理中心即将开建

    科技日报贵阳4月12日电 经历了疫情考验却依然保持正常运行,“中国天眼”怎么应对海量数据所带来的巨大挑战?随着FAST科学研究与数据处理中心的落地建设,这一问题可能迎刃而解。12日,记者从贵州贵安新区获悉,即...

  • 人工智能抗疫尚需重视“软基建”

    科技日报北京4月9日电 在线教育,远程办公,无人配送,健康监测,数据研判……在新型冠状病毒感染的肺炎疫情防控中,以人工智能为代表的新兴科技,渗透进社会运行的方方面面。4月9日上午,在中国科协学会学术部、中...

  • 能读懂你心里话的AI来了,识别错误率低至3%

    最近,美国加州大学旧金山分校的科研团队使用人工智能解码系统,把人的脑电波转译成英文句子,最低平均错误率只有3%。这项研究发表在《自然·神经科学》杂志上。 参加实验的4名志愿者都是癫痫患者,他们由于治...

AI又当医生了,这次是通过血液识别癌症

发布时间:2020/03/26 创新 浏览:39

近日,顶尖学术期刊《自然》上线了一项有关癌症诊断的重要研究。
与以往不同的是,来自美国加州大学圣迭戈分校的科学家,通过训练人工智能从血液中鉴定微生物的遗传物质,不仅可以识别出癌症,还能对不同类型的癌症做出区分。
“这是一个很有前景的方向,改变了传统的检测方法,而且运用人工智能技术,使得海量的检索和比对工作得以快速而准确地完成。”南京信息工程大学教授徐军评价道。
微生物与肿瘤微环境息息相关
菌群与人体的关系毫无疑问是十分密切的。有科学家估计,在每个人的身体中细菌的数量占到了人体所有活细胞的90%。此外,我们体内还有许多病毒存在。
这些常驻人体的微生物几乎参与了人体的一切生命活动,所以,它们的核酸片段(DNA或RNA)也就经血液游荡在我们体内。
近年来,许多研究证据显示,人体微生物对多种类型的肿瘤有“贡献”。科学家猜想,这些微生物在癌症中所起的作用也许比我们已知的更多。因为以前的癌症研究工作,忽略了人体癌细胞与微生物可能有复杂的相互作用。
这也就提供了一种全新的检测癌症的思路:用正常人血液中与癌症患者血液做对比,其中的微生物是否会有差别呢?
于是,美国加州大学圣迭戈分校的科学家有了一个大胆的设想:分析血液中来自微生物的遗传物质,可以根据其特征模式来识别体内的肿瘤。
如果在过去,这种设想真的只能是想想罢了,“这是因为细菌的数量十分庞大,检测它们的基因序列将是一个海量工程。”徐军说,但是得益于基因测序技术的发展,现在测序的费用与时间都在大幅下降,同时微生物的基因测序也能够运用AI技术,效率能大大提升。
徐军告诉记者,疾病的检测、诊断和治疗是一个非常复杂的过程,需要借助多方面信息,比如图像数据、基因数据、分子和蛋白的表达,患者的病史、遗传背景、家族史等其他数据化信息,以及患者的临床数据,微生物的核酸特征等等。大数据和机器学习技术的加入,从基因层面、细胞层面、以及微生物层面展现患者个体化的信息。
“我们对这些问题理解越深刻,治疗疾病的成功率就越高。”徐军说,在没有AI技术之前,尽管我们能够采集大量的数据,但是由于能力限制,能够获取的知识很有限。比如尽管我们能够破译人类的基因,但是目前90%以上的信息我们还不能理解对疾病的诊断和治疗有什么作用。
人工智能测癌可靠性有多高
研究人员在几千份样本中找到相应的微生物特征后,把工作交给了人工智能。通过相应的机器学习模型来挖掘大量数据,把特定的微生物序列特征与特定的癌症相匹配。
“机器学习的方式主要有监督学习和非监督学习,从这个项目公开的信息来看,采用的是监督学习模式。”徐军分析说,监督学习的特点是人类会把知识传授给计算机,计算机根据样本的特征进行学习,接下来就能够自动区分疾病或者健康的样本。
另一种非监督学习将能够使得机器具备更高的智能,即人类没有给计算机提示,计算机通过归纳的样本之间的规律和模式,突破了以往需人类干预才可学习的局限。
“现在还有一种新的非监督学习模式——对抗学习,其特点是人类设计出两个模型,一个用于制造伪装数据,另一个用于鉴别伪装,在你来我往中实现互赢,最后达到纳什均衡状态。”徐军认为,我国拥有大量的疾病数据,医学和人工智能领域之间如果能够长期深入合作,将能够更好地为患者服务。
从此项研究的结果来看,这套AI模型在实际诊断中是可靠的。科学家让AI对100名患者的样本血浆进行分析,并与69名健康无癌个体的血样进行比较。机器学习模型不仅可以区分患癌和无癌的样本,还能区分不同类型的癌症:以86%的敏感性识别出肺癌患者,对于无肺部疾病的个体没有出现假阳性报告,并且以81%的准确率区分出前列腺癌和肺癌。
“达到这个准确率具备了参考价值,但需要注意的是,这个结果可能是在理想的条件下得到的,论文作者可能也剔除了许多不规范的样本和数据。”徐军认为,这还是一项早期的概念验证研究,应用到临床还需要做大量工作。
专家认为,AI和大数据的加入,可以完成更加复杂的任务。比如基因序列的读取,是人的眼睛和智力水平基本上无法完成的,而人工智能和大数据技术的广泛使用将能够很好地解决这个问题。
徐军告诉记者,人工智能技术在医学领域得到广泛的关注,它并不是偶然发生的,而是建立在近年来以机器学习为代表的深度学习技术取得了巨大突破的基础上。
“2019年,《自然·医学》出版了一期特刊,该特刊的12篇论文全部和人工智能相关,这说明人工智能技术和医学结合的爆发点已经到来。”徐军说,以人工智能技术为核心的机器能够极大地弥补人类的不足。